Линейная алгебра и геометрия
   Справочник формул




Прикладная математика
основные математические формулы











     Линейные пространства и линейные отображения / Подпространства и прямые суммы / 1 2 3 4 5 6 7 8 9


2. Определение. Пусть - линейные подпространства в L. Их суммой называется множество

Легко убедиться, что сумма также является линейным подпространством и что эта операция сложения ассоциативна и коммутативна, так же как и операция пересечения линейных подпространств. Другое описание суммы L1 + ... + Ln состоит в том, что это наименьшее подпространство в L, содержащее все Li.

Следующая теорема связывает размерности суммы двух подпространств и их пересечения:

3. Теорема. Если конечномерны, то и L1 + L2 конечномерны и

dim() + dim(L1 + L2) = dim L1 + dim L2.

Доказательство. L1 + L2 является линейной оболочкой объединения базисов L1 и L2 и потому конечномерно; содержится в конечномерных пространствах L1 и L2.

Положим m = dim , n = dim L1, p = dim L2. Выберем базис {e1, ..., em} пространства , его можно дополнить до базисов пространств L1 и L2: пусть это будет и . Назовем такую пару базисов в L1 и L2 согласованной.


-1-2-3-4-5-6-7-8-9-


   a
   б
   в
   г
   д
   е
   ж
   з
   и
   к
   л
   м
   н
   о
   п
   р
   с
   т
   у
   ф
   х
   ц
   ч
   ш
   щ
   э
   ю
   я
© 2007-2008 ФиПМ

Линейная алгебра и геометрия
математические формулы, он-лайн справочник